Temperature and Magnetic Field Enhanced Hall Slope of a Dilute 2D Hole System in the Ballistic Regime


الملخص بالإنكليزية

We report the temperature($T$) and perpendicular magnetic field($B$) dependence of the Hall resistivity $rho_{xy}(B)$ of dilute metallic two-dimensional(2D) holes in GaAs over a broad range of temperature(0.02-1.25K). The low $B$ Hall coefficient, $R_H$, is found to be enhanced when $T$ decreases. Strong magnetic fields further enhance the slope of $rho_{xy}(B)$ at all temperatures studied. Coulomb interaction corrections of a Fermi liquid(FL) in the ballistic regime can not explain the enhancement of $rho_{xy}$ which occurs in the same regime as the anomalous metallic longitudinal conductivity. In particular, although the metallic conductivity in 2D systems has been attributed to electron interactions in a FL, these same interactions should reduce, {it not enhance} the slope of $rho_{xy}(B)$ as $T$ decreases and/or $B$ increases.

تحميل البحث