We introduce a two-dimensional growth model where every new site is located, at a distance $r$ from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+alpha_G} (alpha_G ge 0)$, and is attached to (only) one pre-existing site with a probability $propto k_i/r^{alpha_A}_i (alpha_A ge 0$; $k_i$ is the number of links of the $i^{th}$ site of the pre-existing graph, and $r_i$ its distance to the new site). Then we numerically determine that the probability distribution for a site to have $k$ links is asymptotically given, for all values of $alpha_G$, by $P(k) propto e_q^{-k/kappa}$, where $e_q^x equiv [1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $alpha_A$ not too large) by $q = 1+(1/3) e^{-0.526 alpha_A}$, and the characteristic number of links by $kappa simeq 0.1+0.08 alpha_A$. The $alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $<k_i>$ increases with the scaled time $t/i$; asymptotically, $<k_i > propto (t/i)^beta$, the exponent being close to $beta={1/2}(1-alpha_A)$ for $0 le alpha_A le 1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs $Gamma$-space for Hamiltonian systems) a scale-free network.