Stochastic Resonance and Nonequilibrium Dynamic Phase Transition of Ising Spin System Driven by a Joint External Field


الملخص بالإنكليزية

We studied the dynamic response and stochastic resonance of kinetic Ising spin system (ISS), subject to the joint external field of weak sinusoidal modulation and stochastic white-noise, through solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows the occurrence of characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) when the frequency and amplitude h0 of driving field, the temperature t of the system and noise intensity D attain a specific accordance in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to zero and unit dynamic order parameter. We also figured out the NDPT boundary surface of the system which separates the dynamic paramagnetic and dynamic ferromagnetic phase in the 3D parameter space of h0~t~D. An intriguing dynamical ferromagnetic phase with an intermediate order parameter at 0.66 was revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. Our primary result indicates that the intermediate order dynamical ferromagnetic phase is dynamic metastable in nature and owns a peculiar characteristic in its stability and response to external driving field when compared with fully order dynamic ferromagnetic phase.

تحميل البحث