Experimental determination of the number of flux lines trapped by micro-holes in superconducting samples


الملخص بالإنكليزية

The influence of a periodic landscape of pinning sites on the vortex dynamics in Pb thin films is explored by ac-susceptibility measurements. For different amplitudes h of the ac-drive, the ac-susceptibility x=x+ix exhibits a complex field dependence associated with different dynamic regimes. At very low ac-drives where both, multiquanta vortices trapped by the antidots and interstitial vortices oscillate inside the pinning potential (intra-valley motion), a small kink in x(H) together with a very low dissipation is observed. At intermediate ac-excitations such that vortices in the antidots remain pinned whereas interstices are driven out of the pinning well, a more pronounced kink in the screening coinciding with the onset of dissipation (x(H) ~ 0) indicates the entrance of interstitial vortices. Eventually, at high enough amplitudes all vortices are set in motion and the penetration of interstitial vortices appears as a sudden reduction of the shielding power. We show that these distinctive features allow us to clearly identify the maximum number of flux quanta per hole regardless the vortex dynamic regime.

تحميل البحث