Linear-scaling quantum Monte Carlo with non-orthogonal localized orbitals


الملخص بالإنكليزية

We have reformulated the quantum Monte Carlo (QMC) technique so that a large part of the calculation scales linearly with the number of atoms. The reformulation is related to a recent alternative proposal for achieving linear-scaling QMC, based on maximally localized Wannier orbitals (MLWO), but has the advantage of greater simplicity. The technique we propose draws on methods recently developed for linear-scaling density functional theory. We report tests of the new technique on the insulator MgO, and show that its linear-scaling performance is somewhat better than that achieved by the MLWO approach. Implications for the application of QMC to large complex systems are pointed out.

تحميل البحث