Entangled electronic state via an interacting quantum dot


الملخص بالإنكليزية

We study a device for entangling electrons as cotunneling occurs through a quantum dot where on-site electron-electron interactions $U$ are in place. The main advantage of this device is that single particle processes are forbidden by energy conservation as proposed by Oliver et alcite{oli02}. Within this model we calculated two electron transition amplitude, in terms of the T-matrix, to all orders in the coupling to the dot, and consider a finite lead bandwidth. The model filters singlet entangled pairs with the sole requirement of Pauli principle. Feynman paths involving consecutive and doubly occupied dot interfere destructively and produce a transition amplitude minimum at a critical value of the onsite repulsion $U$. Singlet filtering is demonstrated as a function of a gate voltage applied to the dot with a special resonance condition when the dot levels are symmetrically placed about the input lead energy.

تحميل البحث