A rational representation for the self-energy is explored to interpolate the solution of the Anderson impurity model in general orbitally degenerate case. Several constrains such as the Friedels sum rule, high--frequency moments and the value of quasiparticle residue are used to establish the equations for the coefficients of the interpolation. We test two fast techniques, the slave--boson mean--field and the Hubbard I approximation to determine the coefficients. The obtained self--energies are compared with the results of numerically exact Quantum Monte Carlo method. We find that using the slave--boson mean--field approach we can construct an accurate self--energy for all frequencies via the proposed interpolation procedure.