Quantum critical behavior of the one-dimensional ionic Hubbard model


الملخص بالإنكليزية

We study the zero-temperature phase diagram of the half-filled one-dimensional ionic Hubbard model. This model is governed by the interplay of the on-site Coulomb repulsion and an alternating one-particle potential. Various many-body energy gaps, the charge-density-wave and bond-order parameters, the electric as well as the bond-order susceptibilities, and the density-density correlation function are calculated using the density-matrix renormalization group method. In order to obtain a comprehensive picture, we investigate systems with open as well as periodic boundary conditions and study the physical properties in different sectors of the phase diagram. A careful finite-size scaling analysis leads to results which give strong evidence in favor of a scenario with two quantum critical points and an intermediate spontaneously dimerized phase. Our results indicate that the phase transitions are continuous. Using a scaling ansatz we are able to read off critical exponents at the first critical point. In contrast to a bosonization approach, we do not find Ising critical exponents. We show that the low-energy physics of the strong coupling phase can only partly be understood in terms of the strong coupling behavior of the ordinary Hubbard model.

تحميل البحث