Configuration interaction method for Fock-Darwin states


الملخص بالإنكليزية

We present a configuration interaction method optimized for Fock-Darwin states of two-dimensional quantum dots with an axially symmetric, parabolic confinement potential subject to a perpendicular magnetic field. The optimization explicitly accounts for geometrical and dynamical symmetries of the Fock-Darwin single-particle states and for many-particle symmetries associated with the center-of-mass motion and with the total spin. This results in a basis set of reduced size and improved accuracy. The numerical results compare well with the quantum Monte Carlo and stochastic variational methods. The method is illustrated by the evolution of a strongly correlated few-electron droplet in a magnetic field in the regime of the fractional quantum Hall effect.

تحميل البحث