We use a new version of the reversible Parking Lot Model to study the compaction of vibrated polydisperse media. The particle sizes are distributed according to a truncated power law. We introduce a self-consistent desorption mechanism with a hierarchical initialization of the system. In this way, we approach densities close to unity. The final density depends on the polydispersity of the system as well as on the initialization and will reach a maximum value for a certain exponent in the power law.