Structure and bonding of dense liquid oxygen from first principles simulations


الملخص بالإنكليزية

Using first principles simulations we have investigated the structural and bonding properties of dense fluid oxygen up to 180 GPa. We have found that band gap closure occurs in the molecular liquid, with a slow transition from a semi-conducting to a poor metallic state occurring over a wide pressure range. At approximately 80 GPa, molecular dissociation is observed in the metallic fluid. Spin fluctuations play a key role in determining the electronic structure of the low pressure fluid, while they are suppressed at high pressure.

تحميل البحث