A tight binding parametrization of local spin density functional band theory is combined with a dynamical mean field treatment of correlations to obtain a theory of the magnetic transition temperature, optical conductivity and T=0 spinwave stiffness of a minimal model for the pseudocubic metallic $CMR$ manganites such a $La_{1-X}Sr_{x}MnO_{3}$. The results indicate that previous estimates of $T_{c}$ obtained by one of us (Phys. Rev. textbf{B61} 10738-49 (2000)) are in error, that in fact the materials are characterized by Hunds coupling $Japprox 1.5eV$, and that magnetic-order driven changes in the kinetic energy may not be the cause of the observed colossal magnetoresistive and multiphase behavior in the manganites, raising questions about our present understanding of these materials.