We report the doping dependence of the order of the ferromagnetic metal to paramagnetic insulator phase transition in La1-xCaxMnO3. At x = 0.33, magnetization and specific heat data show a first order transition, with an entropy change (2.3 J/molK) accounted for by both volume expansion and the discontinuity of M ~ 1.7 Bohr magnetons via the Clausius-Clapeyron equation. At x = 0.4, the data show a continuous transition with tricritical point exponents alpha = 0.48+/- 0.06, beta = 0.25+/- 0.03, gamma = 1.03+/- 0.05, and delta = 5.0 +/- 0.8. This tricritical point separates first order (x<0.4) from second order (x>0.4) transitions.