We have studied the island size distribution and spatial correlation function of an island growth model under the effect of an elastic interaction of the form $1/r^{3}$. The mass distribution $P_n(t)$ that was obtained presents a pronounced peak that widens with the increase of the total coverage of the system, $theta$. The presence of this peak is an indication of the self-organization of the system, since it demonstrates that some sizes are more frequent than others. We have treated exactly the energy of the system using periodic boundary conditions which were used in the Monte-Carlo simulations. A discussion about the effect of different factors is presented.