We report on the formation of ultra-cold Na$_2$ molecules using single-photon photoassociation of a Bose-Einstein condensate. The photoassociation rate, linewidth and light shift of the J=1, $v=135$ vibrational level of the mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the photoassociation rate constant increases linearly with intensity, even where it is predicted that many-body effects might limit the rate. Our observations are everywhere in good agreement with a two-body theory having no free parameters.