Growing attention has been drawn in the past years to the alpha-phase (1/3 monolayer) of Sn on Ge(111), which undergoes a transition from the low temperature (3x3) phase to the room temperature (sqrt3 x sqrt3)R30° one. On the basis of scanning tunnelling microscopy experiments, this transition was claimed to be the manifestation of a surface charge density wave (SCDW), i.e. a periodic redistribution of charge, possibly accompanied by a periodic lattice distortion, which determines a change of the surface symmetry. Recent He diffraction studies of the (3x3) long range order have shown the transition to be of the order-disorder type with a critical temperature Tc=220 K and belonging to the 3-state Potts universality class. These findings clearly exclude an SCDW driven mechanism at 220 K, but they cannot exclude the occurence of a displacive transition at higher temperature. Here we present photoelectron diffraction data taken at 300 K and photoemission data taken up to 500 K (which is the maximum temperature where the (sqrt3 x sqrt3)R30° is stable) . From our analysis it is shown that the atomic structure of the Sn overlayer does not change throughout the transition up to 500 K. As a consequence the displacive hypothesis must be discarded in favour of a genuine order-disorder model.