Stability of Repulsive Bose-Einstein Condensates in a Periodic Potential


الملخص بالإنكليزية

The cubic nonlinear Schrodinger equation with repulsive nonlinearity and an elliptic function potential models a quasi-one-dimensional repulsive dilute gas Bose-Einstein condensate trapped in a standing light wave. New families of stationary solutions are presented. Some of these solutions have neither an analog in the linear Schrodinger equation nor in the integrable nonlinear Schrodinger equation. Their stability is examined using analytic and numerical methods. All trivial-phase stable solutions are deformations of the ground state of the linear Schrodinger equation. Our results show that a large number of condensed atoms is sufficient to form a stable, periodic condensate. Physically, this implies stability of states near the Thomas-Fermi limit.

تحميل البحث