Stretched Exponential Relaxation on the Hypercube and the Glass Transition


الملخص بالإنكليزية

We study random walks on the dilute hypercube using an exact enumeration Master equation technique, which is much more efficient than Monte Carlo methods for this problem. For each dilution $p$ the form of the relaxation of the memory function $q(t)$ can be accurately parametrized by a stretched exponential $q(t)=exp(-(t/tau)^beta)$ over several orders of magnitude in $q(t)$. As the critical dilution for percolation $p_c$ is approached, the time constant $tau(p)$ tends to diverge and the stretching exponent $beta(p)$ drops towards 1/3. As the same pattern of relaxation is observed in wide class of glass formers, the fractal like morphology of the giant cluster in the dilute hypercube is a good representation of the coarse grained phase space in these systems. For these glass formers the glass transition can be pictured as a percolation transition in phase space.

تحميل البحث