We present absolutely calibrated FUV spectra of the quasar 3C~273 covering 900- 1800 A. Our ~3 A resolution spectra were obtained with the Hopkins Ultraviolet Telescope during the Astro-1 mission in December 1990 and during the Astro-2 mission in March 1995. Both spectra exhibit a change in slope near the Lyman limit in the quasar rest frame. At longer UV wavelengths, the continuum has a power-law index of 0.5-0.7, while shortward of the Lyman limit it is 1.2-1.7. The energy distribution in nuf_nu therefore peaks close to the quasar Lyman limit. The short wavelength UV power law extrapolates well to match the soft X-ray excess seen in simultaneous observations with BBXRT and nearly simultaneous ROSAT observations. The general shape of the broad-band spectrum of 3C 273 is consistent with that of an optically thick accretion disk whose emergent spectrum has been Comptonized by a hot medium. Our UV spectrum is well described by a Schwarzschild black hole of 7e8 Msun accreting matter at a rate of 13 Msun/yr through a disk inclined at 60 degrees. Superposed on the intrinsic disk spectrum is an empirically determined Lyman edge of optical depth 0.5. The Comptonizing medium has a Compton parameter y~1, an optical depth to electron scattering of unity, and a temperature of 4e8 K. This overall shape is the same as that found by Zheng et al. and Laor et al. in their UV and X-ray composite spectra for quasars, giving physical validity to the composite spectrum approach. When combined with those results, we find that the generic ionizing continuum shape for quasars is a power law of energy index 1.7-2.2, extending from the Lyman limit to ~1 keV. The observational gap in the extreme ultraviolet for these combined data describing the quasar continuum shape is now only half a decade in frequency.