Cosmic-Ray Momentum Diffusion In Magnetosonic Versus Alfvenic Turbulent Field


الملخص بالإنكليزية

Energetic particle transport in a finite amplitude magnetosonic and Alfvenic turbulence is considered using Monte Carlo particle simulations, which involve an integration of particle equation of motion. We show that in a low-Betha plasma cosmic ray can be the most important damping process for magnetosonic waves. Assuming such conditions we derive the momentum diffusion coefficient for relativistic particles in the presence of anisotropic finite-amplitude turbulent wave field, for flat and Kolmogorov-type turbulence spectra. We confirm the possibility of larger values of a momentum diffusion coefficient occuring due to transit-time damping resonance interaction in the presence of isotropic fast-mode waves in comparison to the Alfven waves of the same amplitude.

تحميل البحث