This presentation is a Moriond version of our recent paper (Kravtsov, Vikhlinin & Nagai astro-ph/0603205) where we discussed X-ray proxies for the total cluster mass, including the spectral temperature (Tx), gas mass measured within r500 (Mg), and the new proxy, Yx, which is a simple product of Tx and Mg. We use mock Chandra images constructed for a sample of clusters simulated with high resolution in the concordance LambdaCDM cosmology. The simulated clusters exhibit tight correlations between the considered observables and total mass. The normalizations of the M500-Tx, Mg-Tx, and M500-Yx relations agree to better than =~ 10-15% with the current observational measurements of these relations. Our results show that Yx is the best mass proxy with a remarkably low scatter of only =~ 5-7% in M500 for a fixed Yx, at both low and high redshifts and regardless of whether clusters are relaxed or not. In addition, we show that redshift evolution of the Yx-M500 relation is close to the self-similar prediction, which makes Yx a very attractive mass indicator for measurements of the cluster mass function from X-ray selected samples.