The slope of the GRB Variability/Peak Luminosity Correlation


الملخص بالإنكليزية

From a sample of 32 GRBs with known redshift (Guidorzi et al. 2005) and then a sample of 551 BATSE GRBs with derived pseudo-redshift (Guidorzi 2005), the time variability/peak luminosity correlation (V vs. L) found by Reichart et al. (2001) was tested. For both samples the correlation is still found but less relevant due to a much higher spread of the data. Assuming a straight line in the logL-logV plane (logL = m logV + b), as done by Reichart et al., the slope was found lower than that derived by Reichart et al.: m = 1.3_{-0.4}^{+0.8} (Guidorzi et al. 2005), m = 0.85 +- 0.02 (Guidorzi 2005), to be compared with m = 3.3^{+1.1}_{-0.9} (Reichart et al. 2001). Reichart & Nysewander (2005) attribute the different slope to the fact we do not take into account in the fit the variance of the sample, and demonstrate that, using the method by Reichart (2001), the data set of Guidorzi et al. (2005) in logL-logV plane is still well described with slope m = 3.4^{+0.9}_{-0.6}. Here we compare the results of two methods accounting for the variance of the sample, that implemented by Reichart (2001) and that by DAgostini (2005). We demonstrate that the method by Reichart (2001) provides an inconsistent estimate of the slope when the sample variance is comparable with the interval of values covered by the variability. We also show that, using the DAgostini method, the slope is consistent with that derived by us earlier and inconsistent with that derived by Reichart & Nysewander (2005). Finally we discuss the implications on the interpretations and show that our results are in agreement with the peak energy/variability correlation found by Lloyd-Ronning & Ramirez-Ruiz (2002) and the peak energy/peak luminosity correlation (Yonetoku et al. 2004; Ghirlanda et al. 2005) [abridged].

تحميل البحث