The spatial clustering of ultraluminous infrared galaxies over 1.5<z<3


الملخص بالإنكليزية

We present measurements of the spatial clustering of galaxies with stellar masses >10^11Msun, infrared luminosities >10^12 Lsun, and star formation rates >200Msun per year in two redshift intervals; 1.5<z<2.0 and 2<z<3. Both samples cluster very strongly, with spatial correlation lengths of r_0=14.40+/-1.99 h^-1Mpc for the 2<z<3 sample, and r_0=9.40+/-2.24 h^-1Mpc for the 1.5<z<2.0 sample. These clustering amplitudes are consistent with both populations residing in dark matter haloes with masses of ~6x10^13Msun, making them among the most biased galaxies at these epochs. We infer, from this and previous results, that a minimum dark matter halo mass is an important factor for all forms of luminous, obscured activity in galaxies at z>1, both starbursts and AGN. Adopting plausible models for the growth of DM haloes with redshift, then the haloes hosting the 2<z<3 sample will likely host the richest clusters of galaxies at z=0, whereas the haloes hosting the 1.5<z<2.0 sample will likely host poor to rich clusters at z=0. We conclude that ULIRGs at z>1 signpost stellar buildup in galaxies that will reside in clusters at z=0, with ULIRGs at increasing redshifts signposting the buildup of stars in galaxies that will reside in increasingly rich clusters.

تحميل البحث