Evolving structures of star-forming clusters


الملخص بالإنكليزية

Understanding the formation and evolution of young star clusters requires quantitative statistical measures of their structure. We investigate the structures of observed and modelled star-forming clusters. By considering the different evolutionary classes in the observations and the temporal evolution in models of gravoturbulent fragmentation, we study the temporal evolution of the cluster structures. We apply different statistical methods, in particular the normalised mean correlation length and the minimum spanning tree technique. We refine the normalisation of the clustering parameters by defining the area using the normalised convex hull of the objects and investigate the effect of two-dimensional projection of three-dimensional clusters. We introduce a new measure $xi$ for the elongation of a cluster. It is defined as the ratio of the cluster radius determined by an enclosing circle to the cluster radius derived from the normalised convex hull. The mean separation of young stars increases with the evolutionary class, reflecting the expansion of the cluster. The clustering parameters of the model clusters correspond in many cases well to those from observed ones, especially when the $xi$ values are similar. No correlation of the clustering parameters with the turbulent environment of the molecular cloud is found, indicating that possible influences of the environment on the clustering behaviour are quickly smoothed out by the stellar velocity dispersion. The temporal evolution of the clustering parameters shows that the star cluster builds up from several subclusters and evolves to a more centrally concentrated cluster, while the cluster expands slower than new stars are formed.

تحميل البحث