Optical Lightcurve & Cooling Break of GRB 050502A


الملخص بالإنكليزية

We present lightcurves of the afterglow of GRB050502A, including very early data at t-t_{GRB} < 60s. The lightcurve is composed of unfiltered ROTSE-IIIb optical observations from 44s to 6h post-burst, R-band MDM observations from 1.6 to 8.4h post-burst, and PAIRITEL J H K_s observations from 0.6 to 2.6h post-burst. The optical lightcurve is fit by a broken power law, where t^{alpha} steepens from alpha = -1.13 +- 0.02 to alpha = -1.44 +- 0.02 at ~5700s. This steepening is consistent with the evolution expected for the passage of the cooling frequency nu_c through the optical band. Even in our earliest observation at 44s post-burst, there is no evidence that the optical flux is brighter than a backward extrapolation of the later power law would suggest. The observed decay indices and spectral index are consistent with either an ISM or a Wind fireball model, but slightly favor the ISM interpretation. The expected spectral index in the ISM interpretation is consistent within 1 sigma with the observed spectral index beta = -0.8 +- 0.1; the Wind interpretation would imply a slightly (~2 sigma) shallower spectral index than observed. A small amount of dust extinction at the source redshift could steepen an intrinsic spectrum sufficiently to account for the observed value of beta. In this picture, the early optical decay, with the peak at or below 4.7e14 Hz at 44s, requires very small electron and magnetic energy partitions from the fireball.

تحميل البحث