Probing the Coevolution of Supermassive Black Holes and Quasar Host Galaxies


الملخص بالإنكليزية

At low redshift, there are fundamental correlations between the mass of supermassive black holes (MBH) and the mass (Mbulge) and luminosity of the host galaxy bulge. We investigate the same relation at z>=1. Using virial mass estimates for 11 quasars at z >~2 to measure their black hole mass, we find that black holes at high z fall nearly on the same MBH versus R-band magnitude (MR) relation (to ~0.3 mag) as low-redshift active and inactive galaxies, without making any correction for luminosity evolution. Using a set of conservative assumptions about the host galaxy stellar population, we show that at z>~2 (10 Gyrs ago) the ratio of MBH/Mbulge was 3--6 times larger than today. Barring unknown systematic errors on the measurement of MBH, we also rule out scenarios in which moderately luminous quasar hosts at z>~2 were fully formed bulges that passively fade to the present epoch. On the other hand, 5 quasar hosts at z~1 are consistent with current day MBH-MR relationship after taking into account evolution, appropriate for that of E/S0 galaxies. Therefore, z~1 host galaxies appear to fit the hypothesis they are fully formed early-type galaxies. We also find that most quasar hosts with absolute magnitudes brighter than MR = -23 cannot fade below L* galaxies today, regardless of their stellar population makeup, because their black hole masses are too high and they must arrive at the local MBH-MR relationship by z=0.

تحميل البحث