Spitzer Observations of G Dwarfs in the Pleiades: Circumstellar Debris Disks at 100 Myr Age


الملخص بالإنكليزية

Fluxes and upper limits in the wavelength range from 3.6 to 70 microns from the Spitzer Space Telescope are provided for twenty solar-mass Pleiades members. One of these stars shows a probable mid-IR excess and two others have possible excesses, presumably due to circumstellar debris disks. For the star with the largest, most secure excess flux at MIPS wavelengths, HII1101, we derive Log(L[dust]/L[Sun]) ~ -3.8 and an estimated debris disk mass of 4.2 x 10^-5 M(Earth) for an assumed uniform dust grain size of 10 microns If the stars with detected excesses are interpreted as stars with relatively recent, large collision events producing a transient excess of small dust particles, the frequency of such disk transients is about ~ 10 % for our ~ 100 Myr, Pleiades G dwarf sample. For the stars without detected 24-70 micron excesses, the upper limits to their fluxes correspond to approximate 3 sigma upper limits to their disk masses of 6 x 10^-6 M(Earth) using the MIPS 24 micron upper limit, or 2 x 10^-4 M(Earth) using the MIPS 70 micron limit. These upper limit disk masses (for warm and cold dust, respectively) are roughly consistent, but somewhat lower than, predictions of a heuristic model for the evolution of an average solar-mass stars debris disk based on extrapolation backwards in time from current properties of the Suns Kuiper belt.

تحميل البحث