Hydrodynamic Simulations of A Moving Substructure in A Cluster of Galaxies: Cold Fronts and Turbulence Generation


الملخص بالإنكليزية

We perform three dimensional hydrodynamical simulations of a moving substructure in a cluster of galaxies. We investigate dynamical evolution of the intracluster medium (ICM) in and around the substructure moving radially in the larger clusters gravitational potential, and its observational consequences. After the substructure passes the larger clusters center, a bow shock and clear contact discontinuity form in front of it. The contact discontinuity looks like a sharp cold front in the X-ray image synthesized from the simulation results. This agrees with a structure found in 1E 0657-56. The flow structure remains laminar before the first turnaround because the ram-pressure stripping is dominant over the development of Kelvin-Helmholtz instabilities on the boundary between the substructure and the ambient ICM. When a subcluster oscillates radially around the larger clusters center, both Kelvin-Helmholtz and Rayleigh-Taylor instabilities develop well and the flow structure becomes highly turbulent. Around the turnaround, the subclusters cold gas is pushed out of its potential well. Therefore, the cold gas component appears to be in front of the subcluster. A relatively blunt cold front appears in the simulated X-ray image because the contact discontinuity is perturbed by Rayleigh-Taylor instabilities. This can explain the ICM structure found in A168.

تحميل البحث