A Remarkable Low-Mass X-ray Binary within 0.1 pc of the Galactic Center


الملخص بالإنكليزية

Recent X-ray and radio observations have identified a transient low-mass X-ray binary (LMXB) located only 0.1 pc in projection from the Galactic center, CXOGC J174540.0-290031. In this paper, we report the detailed analysis of X-ray and infrared observations of the transient and its surroundings. Chandra bservations detect the source at a flux of F_X = 2e-12 erg cm^-2 s^-1 (2-8 keV). After accounting for absorption both in the interstellar medium and in material local to the source, the implied luminosity of the source is only L_X = 4e34 erg/s (2-8 keV; D=8 kpc). However, the diffuse X-ray emission near the source also brightened by a factor of 2. The enhanced diffuse X-ray emission lies on top of a known ridge of dust and ionized gas that is visible infrared images. We interpret the X-ray emission as scattered flux from the outburst, and determine that the peak luminosity of CXOGC J174540.0-290031 was >2e36 erg/s. We suggest that the relatively small observed flux results from the fact that the system is observed nearly edge-on, so that the accretion disk intercepts most of the flux emitted along our line of sight. We compare the inferred peak X-ray luminosity to that of the radio jet. The ratio of the X-ray to radio luminosities, L_X/L_R<1e4, is considerably smaller than in other known LMXBs (> 1e5). This is probably because the jets are radiating with unusually high efficiency at the point where they impact the surrounding interstellar medium. This hypothesis is supported by a comparison with mid-infrared images of the surrounding dust. Finally, we find that the minimum power required to produce the jet, L_jet~1e37 erg/s, is comparable to the inferred peak X-ray luminosity. This is the most direct evidence yet obtained that LMXBs accreting at low rates release about half of their energy as jets.

تحميل البحث