Evidence of high-velocity features such as those seen in the near-maximum spectra of some Type Ia Supernovae (eg SN 2000cx) has been searched for in the available SNIa spectra observed earlier than one week before B maximum. Recent observational efforts have doubled the number of SNeIa with very early spectra. Remarkably, all SNeIa with early data (7 in our RTN sample and 10 from other programmes) show signs of such features, to a greater or lesser degree, in CaII IR, and some also in SiII 6255A line. High-velocity features may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disc and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in Single Degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion, and would suggest a deflagration as the more likely explosion mechanism. CSM-interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.