Intracluster stars in the Virgo cluster core


الملخص بالإنكليزية

We have investigated the properties of the diffuse light in the Virgo cluster core region, based on the detection of intracluster planetary nebulae (PNe) in four fields. We eliminate the bias from misclassified faint continuum objects, using improved Monte Carlo simulations, and the contaminations by high redshift Ly$alpha$ galaxies, using the Ly$alpha$ luminosity function in blank fields. Recent spectroscopic observations confirm that our photometric PN samples are well-understood. We find that the diffuse stellar population in the Virgo core region is inhomogeneous on scales of 30-90: there exist significant field-to-field variations in the number density of PNe and the inferred amount of intracluster light, with some empty fields, some fields dominated by extended Virgo galaxy halos, and some fields dominated by the true intracluster component. There is no clear trend with distance from M87. The mean surface luminosity density, its rms variation, and the mean surface brightness of diffuse light in our 4 fields are $Sigma_B = 2.7 x 10^{6}$ L$_{Bodot}$ arcmin$^{-2}$, ${rms} = 2.1 times 10^{6}$ L$_{Bodot}$ arcmin$^{-2}$, and $bar{mu}_{B}=29.0$ mag arcsec$^{-2}$ respectively. Our results indicate that the Virgo cluster is a dynamically young environment, and that the intracluster component is associated at least partially with local physical processes like galaxy interactions or harassment. We also argue, based on kinematic evidence, that the so-called over-luminous PNe in the halo of M84 are dynamically associated with this galaxy, and must thus be brighter than and part of a different stellar population from the normal PN population in elliptical galaxies.

تحميل البحث