The XMM-Newton view of the X-ray halo and jet of NGC 6251


الملخص بالإنكليزية

We present an XMM observation of the radio jet and diffuse halo of the nearby radio galaxy NGC6251. The EPIC spectrum of the galaxys halo is best-fitted by a thermal model with temperature kT~1.6 keV and subsolar abundances. Interestingly, an additional hard X-ray component is required to fit the EPIC spectra of the halo above 3 keV, and is independently confirmed by an archival Chandra observation. However, its physical origin is not clear. Contribution from a population of undetected Low Mass X-ray Binaries seems unlikely. Instead, the hard X-ray component could be due to inverse Compton scattering of the CMB photons off relativistic electrons scattered throughout the halo of the galaxy, or non-thermal bremsstrahlung emission. The IC/CMB interpretation, together with limits on the diffuse radio emission, implies a very weak magnetic field, while a non-thermal bremsstrahlung origin implies the presence of a large number of very energetic electrons. We also detect X-ray emission from the outer (~3.5) jet, confirming previous ROSAT findings. Both the EPIC and ACIS spectra of the jet are best-fitted by a power law with photon index ~1.2. A thermal model is formally ruled out by the data. Assuming an origin of the X-rays from the jet via IC/CMB, as suggested by energetic arguments, and assuming equipartition implies a large Doppler factor (delta~10). Alternatively, weaker beaming is possible for magnetic fields several orders of magnitude lower than the equipartition field.

تحميل البحث