Red Galaxy Clustering in the NOAO Deep Wide-Field Survey


الملخص بالإنكليزية

We have measured the clustering of z<0.9 red galaxies and constrained models of the evolution of large-scale structure using the initial 1.2 sq. degree data release of the NOAO Deep Wide-Field Survey (NDWFS). The area and BwRI passbands of the NDWFS allow samples of >1000 galaxies to be selected as a function of spectral type, absolute magnitude, and photometric redshift. Spectral synthesis models can be used to predict the colors and luminosities of a galaxy population as a function of redshift. We have used PEGASE2 models, with exponentially declining star formation rates, to estimate the observed colors and luminosity evolution of galaxies and to connect, as an evolutionary sequence, related populations of galaxies at different redshifts. A red galaxy sample, with present-day rest-frame Vega colors of Bw-R>1.44, was chosen to allow comparisons with the 2dF Galaxy Redshift Survey and Sloan Digital Sky Survey. We find the spatial clustering of red galaxies to be a strong function of luminosity, with r0 increasing from 4.4+/-0.4 Mpc/h at M_R=-20 to 11.2+/-1.0 Mpc/h at M_R=-22. Clustering evolution measurements using samples where the rest-frame selection criteria vary with redshift, including all deep single-band magnitude limited samples, are biased due to the correlation of clustering with rest-frame color and luminosity. The clustering of M_R=-21, Bw-R>1.44 galaxies exhibits no significant evolution over the redshift range observed with r0= 6.3+/-0.5 Mpc/h in comoving coordinates. This is consistent with recent LCDM models where the bias of L* galaxies undergoes rapid evolution and r0 evolves very slowly at z<2.

تحميل البحث