We report on a study of the surface density of Extremely Red Objects (EROs) in the fields of 13 radio-loud quasars at 1.8 < z < 3.0 covering a total area of 61.7 sqr arcmin. There is a large variation in the ERO surface density from field to field, and as many as 30--40 % of the fields have roughly 4--5 times more EROs than what is expected from a random distribution. The average surface density exceeds the value found in large random-field surveys by a factor of 2--3, a result which is significant at the >3 sigma level. Hence, it appears that the quasar lines of sight are biassed towards regions of high ERO density. This might be caused by clusters or groups of galaxies physically associated with the quasars. However, an equally likely possibility is that the observed ERO excess is part of overdensities in the ERO population along the line of sight to the quasars. In this case, the non-randomness of quasar fields with respect to EROs may be explained in terms of gravitational lensing.