Determining the structure of galaxy clusters is essential for an understanding of large scale structure in the universe, and may hold important clues to the identity and nature of dark matter particles. Moreover, the core dark matter distribution may offer insight into the structure formation process. Unfortunately, cluster cores also tend to be the site of complicated astrophysics. X-ray imaging spectroscopy of relaxed clusters, a standard technique for mapping their dark matter distributions, is often complicated by the presence of their putative ``cooling flow gas, and the dark matter profile one derives for a cluster is sensitive to assumptions made about the distribution of this gas. Here we present a statistical analysis of these assumptions and their effect on our understanding of dark matter in galaxy clusters.