Star formation rates in galaxies are frequently estimated using the Balmer line fluxes. However, these can be systematically underestimated because dust competes for the absorption of Lyman continuum photons in the ionized gas. Here we present theoretical correction factors in a simple analytic form. T These factors scale as the product of the ionization parameter, ${cal U}$, and the nebular O/H abundance ratio, both of which can now be derived from the observation of bright nebular line ratios. The correction factors are only somewhat dependent upon the photoelectron production by grains, but are very sensitive to the presence of complex PAH-like carbonaceous molecules in the ionized gas, providing that these can survive in such an environment.