Submillimeter Evidence for the Coeval Growth of Massive Black Holes and Galaxy Bulges


الملخص بالإنكليزية

The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x--ray absorbed active galactic nuclei which have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 microns, with flux densities between 5.9 and 10.1 milliJanskies, and hence are ultraluminous infrared galaxies. Interpreting the submillimeter flux as emission from dust heated by starbursts, these results suggest that the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion, accounting for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio quiet active galactic nuclei, similar to that seen in radio galaxies.

تحميل البحث