Galaxy Mass and Luminosity Scaling Laws Determined by Weak Gravitational Lensing


الملخص بالإنكليزية

We present new measurements of scaling laws relating the luminosity of galaxies to the amplitude and shape of their dark matter halos. Early imaging and spectroscopic data from the Sloan Digital Sky Survey are used to make weak lensing measurements of the surface mass density contrast Delta Sigma_+ around classes of lens objects. This surface mass density contrast as a function of radius is a measure of the galaxy-mass correlation function (GMCF). Because spectroscopic redshifts are available for all lens objects, the mass and distance scales are well constrained. The GMCF measured around ~31,000 lenses is well fit by a power law of the form Delta Sigma_+ = (2.5+0.7-0.6) (R/1 Mpc)^{-0.8+-0.2} h M_sun pc^-2. We compare this GMCF to galaxy luminosity, type, and environment, and find that it varies strongly with all three. We quantify these variations by comparing the normalization of a fit to the inner 260 h^-1 kpc, M_260, to the galaxy luminosity. While M_260 is not strongly related to luminosity in bluest band u, there is a simple, linear relation between M_260 and luminosity in redder bands (g, r, i, and z). We test the universality of these mass-to-light scalings by independently measuring them for spiral and elliptical galaxies,and for galaxies in a variety of environments. We find remarkable consistency in these determinations in the red bands, especially i and z. This consistency across a wide range of systems suggests that the measured scaling represents an excellent cosmic average, and that the integrated star formation history of galaxies is strongly related to the dark matter environments in which they form.

تحميل البحث