Anomalous bulk-boundary correspondence in dimerized topological insulators


الملخص بالإنكليزية

The bulk-boundary correspondence is a generic feature of topological states of matter, reflecting the intrinsic relation between topological bulk and boundary states. For example, robust edge states propagate along the edges and corner states gather at corners in the two-dimensional first-order and second-order topological insulators, respectively. Here, we report two kinds of topological states hosting anomalous bulk-boundary correspondence in the extended two-dimensional dimerized lattice with staggered flux threading. At 1/2-filling, we observe isolated corner states with no fractional charge as well as metallic near-edge states in the C = 2 Chern insulator states. At 1/4-filling, we find a C = 0 topologically nontrivial state, where the robust edge states are well localized along edges but bypass corners. These robust topological insulating states significantly differ from both conventional Chern insulators and usual high-order topological insulators.

تحميل البحث