Large Magnetoresistance and Weak Antilocalization in V1-delta Sb2 Single Crystal


الملخص بالإنكليزية

The binary pnictide semimetals have attracted considerable attention due to their fantastic physical properties that include topological effects, negative magnetoresistance, Weyl fermions and large non-saturation magnetoresistance. In this paper, we have successfully grown the high-quality V1-deltaSb2 single crystals by Sb flux method and investigated their electronic transport properties. A large positive magnetoresistance that reaches 477% under a magnetic field of 12 T at T = 1.8 K was observed. Notably, the magnetoresistance showed a cusp-like feature at the low magnetic fields and such feature weakened gradually as the temperature increased, which indicated the presence of weak antilocalization effect (WAL). The angle-dependent magnetoconductance and the ultra-large prefactor alpha extracted from the Hikami-Larkin-Nagaoka equation revealed that the WAL effect is a 3D bulk effect originated from the three-dimensional bulk spin-orbital coupling.

تحميل البحث