The fate of Landau levels under $delta$-interactions


الملخص بالإنكليزية

We consider the self-adjoint Landau Hamiltonian $H_0$ in $L^2(mathbb{R}^2)$ whose spectrum consists of infinitely degenerate eigenvalues $Lambda_q$, $q in mathbb{Z}_+$, and the perturbed operator $H_upsilon = H_0 + upsilondelta_Gamma$, where $Gamma subset mathbb{R}^2$ is a regular Jordan $C^{1,1}$-curve, and $upsilon in L^p(Gamma;mathbb{R})$, $p>1$, has a constant sign. We investigate ${rm Ker}(H_upsilon -Lambda_q)$, $q in mathbb{Z}_+$, and show that generically $$0 leq {rm dim , Ker}(H_upsilon -Lambda_q) - {rm dim , Ker}(T_q(upsilon delta_Gamma)) < infty,$$ where $T_q(upsilon delta_Gamma) = p_q (upsilon delta_Gamma)p_q$, is an operator of Berezin-Toeplitz type, acting in $p_q L^2(mathbb{R}^2)$, and $p_q$ is the orthogonal projection on ${rm Ker},(H_0 -Lambda_q)$. If $upsilon eq 0$ and $q = 0$, we prove that ${rm Ker},(T_0(upsilon delta_Gamma)) = {0}$. If $q geq 1$, and $Gamma = mathcal{C}_r$ is a circle of radius $r$, we show that ${rm dim , Ker} (T_q(delta_{mathcal{C}_r})) leq q$, and the set of $r in (0,infty)$ for which ${rm dim , Ker}(T_q(delta_{mathcal{C}_r})) geq 1$, is infinite and discrete.

تحميل البحث