Continuous-variable quantum repeaters based on bosonic error-correction and teleportation: architecture and applications


الملخص بالإنكليزية

Quantum repeaters are essential ingredients for quantum networks that link distant quantum modules such as quantum computers and sensors. Motivated by distributed quantum computing and communication, quantum repeaters that relay discrete-variable quantum information have been extensively studied; while continuous-variable (CV) quantum information underpins a variety of quantum sensing and communication application, a quantum-repeater architecture for genuine CV quantum information remains largely unexplored. This paper reports a CV quantum-repeater architecture based on CV quantum teleportation assisted by the Gottesman-Kitaev-Preskill (GKP) code to significantly suppress the physical noise. The designed CV quantum-repeater architecture is shown to significantly improve the performance of CV quantum key distribution, entanglement-assisted communication, and target detection based on quantum illumination, as three representative use cases for quantum communication and sensing.

تحميل البحث