The Boltzmann equation is the traditional framework in which one extends the time-dependent mean field classical description of a many-body system to include the effect of particle-particle collisions in an approximate manner. A semiclassical extension of this approach to quantum many-body systems was suggested by Uehling and Uhlenbeck in 1933 for both Fermi and Bose statistics, and many further generalization of this approach are known as the Boltzmann-Uehling-Uhlenbeck (BUU) equations. Here I suggest a pure quantum version of the BUU type of equations, which is mathematically equivalent to a generalized Time-Dependent Density Functional Theory extended to superfluid systems.