We consider $N$-particle generalizations of $eta$-paring states in a chain of $N$-component fermions and show that these states are exact (high-energy) eigenstates of an extended SU($N$) Hubbard model. We compute the singlet correlation function of the states and find that its behavior is qualitatively different for even and odd $N$. When $N$ is even, these states exhibit off-diagonal long-range order in $N$-particle reduced density matrix. On the other hand, when $N$ is odd, the singlet correlation function decays exponentially toward the other end of the chain but shows a revival at the other end. Finally, we prove that these states are the unique ground states of suitably tailored Hamiltonians.