Linear polarimetric transformations of light polarization states by the action of material media are fully characterized by the corresponding Mueller matrices, which contain in an implicit and intricate manner all measurable information on such transformations. The general characterization of Mueller matrices relies on the nonnegativity of the associated coherency matrix, which can be mathematically formulated through the nonnegativity of its eigenvalues. The enormously involved explicit algebraic form of such formulation prevents its interpretation in terms of simple physical conditions. In this work, a general and simple characterization of Mueller matrices is presented based on their statistical structure. The concepts associated with the retardance, enpolarization and depolarization properties as well as the essential coupling between the two later are directly described in the light of the new approach.