A $k$-matching $M$ of a graph $G=(V,E)$ is a subset $Msubseteq E$ such that each connected component in the subgraph $F = (V,M)$ of $G$ is either a single-vertex graph or $k$-regular, i.e., each vertex has degree $k$. In this contribution, we are interested in $k$-matchings within the four standard graph products: the Cartesian, strong, direct and lexicographic product. As we shall see, the problem of finding non-empty $k$-matchings ($kgeq 3$) in graph products is NP-complete. Due to the general intractability of this problem, we focus on distinct polynomial-time constructions of $k$-matchings in a graph product $Gstar H$ that are based on $k_G$-matchings $M_G$ and $k_H$-matchings $M_H$ of its factors $G$ and $H$, respectively. In particular, we are interested in properties of the factors that have to be satisfied such that these constructions yield a maximum $k$-matching in the respective products. Such constructions are also called well-behaved and we provide several characterizations for this type of $k$-matchings. Our specific constructions of $k$-matchings in graph products satisfy the property of being weak-homomorphism preserving, i.e., constructed matched edges in the product are never projected to unmatched edges in the factors. This leads to the concept of weak-homomorphism preserving $k$-matchings. Although the specific $k$-matchings constructed here are not always maximum $k$-matchings of the products, they have always maximum size among all weak-homomorphism preserving $k$-matchings. Not all weak-homomorphism preserving $k$-matchings, however, can be constructed in our manner. We will, therefore, determine the size of maximum-sized elements among all weak-homomorphims preserving $k$-matching within the respective graph products, provided that the matchings in the factors satisfy some general assumptions.