Observation of spin splitting torque in a collinear antiferromagnet RuO2


الملخص بالإنكليزية

Current-induced spin torques provide efficient data writing approaches for magnetic memories. Recently, the spin splitting torque (SST) was theoretically predicted (R. Gonzalez-Hernandez et al. Phys. Rev. Lett. 126, 127701 (2021)), which combines advantages of conventional spin transfer torque (STT) and spin-orbit torque (SOT) as well as enables controllable spin polarization. Here we provide the experimental evidence of SST in collinear antiferromagnet RuO2 films. The spin current direction is found to be correlated to the crystal orientation of RuO2 and the spin polarization direction is dependent on (parallel to) the Neel vector. These features are quite characteristic for the predicted SST. Our finding not only present a new member for the spin torques besides traditional STT and SOT, but also proposes a promising spin source RuO2 for spintronics.

تحميل البحث