Federated Ensemble Model-based Reinforcement Learning


الملخص بالإنكليزية

Federated learning (FL) is a privacy-preserving machine learning paradigm that enables collaborative training among geographically distributed and heterogeneous users without gathering their data. Extending FL beyond the conventional supervised learning paradigm, federated Reinforcement Learning (RL) was proposed to handle sequential decision-making problems for various privacy-sensitive applications such as autonomous driving. However, the existing federated RL algorithms directly combine model-free RL with FL, and thus generally have high sample complexity and lack theoretical guarantees. To address the above challenges, we propose a new federated RL algorithm that incorporates model-based RL and ensemble knowledge distillation into FL. Specifically, we utilise FL and knowledge distillation to create an ensemble of dynamics models from clients, and then train the policy by solely using the ensemble model without interacting with the real environment. Furthermore, we theoretically prove that the monotonic improvement of the proposed algorithm is guaranteed. Extensive experimental results demonstrate that our algorithm obtains significantly higher sample efficiency compared to federated model-free RL algorithms in the challenging continuous control benchmark environments. The results also show the impact of non-IID client data and local update steps on the performance of federated RL, validating the insights obtained from our theoretical analysis.

تحميل البحث