We show that the solution of the free-boundary incompressible ideal magnetohydrodynamic (MHD) equations with surface tension converges to that of the free-boundary incompressible ideal MHD equations without surface tension given the Rayleigh-Taylor sign condition holds true initially. This result is a continuation of the authors previous works [13,27,12]. Our proof is based on the combination of the techniques developed in our previous works [13,27,12], Alinhac good unknowns, and a crucial anti-symmetric structure on the boundary.