Infinitely Scalable Multiport Interferometers


الملخص بالإنكليزية

Component errors limit the scaling of multiport interferometers based on MZI meshes. These errors arise because imperfect MZIs cannot be perfectly programmed to the cross state. Here, we introduce two modified mesh architectures that overcome this limitation: (1) a 3-splitter MZI for generic errors, and (2) a broadband MZI+Crossing design for correlated errors. Because these designs allow for perfect realization of the cross state, the matrix fidelity no longer decreases with mesh size, allowing scaling to arbitrarily large meshes. The proposed architectures support progressive self-configuration, are more compact than previous MZI-doubling schemes, and do not require additional phase shifters. This eliminates a major obstacle to the development of very-large-scale linear photonic circuits.

تحميل البحث